Katharine D. Wenstrom, MD Director, Division of Reproductive Genetics & Maternal-Fetal Medicine University of Alabama Hospital, Department of OB/GYN

Folic Acid and NTDs

Smithells 1983:

- 973 mothers of NTD infants
- Multivitamin vs no supplement
- NTDs in 0.7% multivitamin vs 4.7% no supplement

Trials of Folic Acid Supplementation

Medical Research Council Vitamin Study, 1991:

- Randomized, double blind
- 33 European centers -- 1817 NTD mothers
- Four treatment groups; FA alone or with vitamins, vitamins only, no supplement

Lancet 1991

Trials of Folic Acid Supplementation

MRC Study, 1991:

 With FA
 Without FA

 NTDs
 5/593, 1.0%
 21/602, 3.5%

RR with folic acid supplement = 0.28

Lancet 1991

Trials of Folic Acid Supplementation

Czeizel et al, 1992

- Randomized, prospective trial
- 4753 low risk women
- 12 vitamins + 0.8 mg FA vs trace elements

NEJM 1992

Trials of Folic Acid Supplementation

Czeizel et al, 1992:

<u>With FA</u> NTDs 0/2104 (0%)

<u>Without FA</u> 6/2052 (0.3%)

NEJM 1992

MTHFR and NTDS Steegers - Theunissen et al, 1995 • 27 NTD mothers vs 31 controls • AF homocysteine in NTDs, but MS homocysteine normal

The AF homocysteine is fetal in origin

Public Health Recommendations

- Public Health Service, 1992: All women: 0.4 mg FA daily
- ACOG Committee Opinion #120, 1993: If previous NTD child: 4.0 mg FA
- daily
- Teratology Society, 1997; Institute of Medicine, 1998
 All women: 0.4 mg FA daily

Effectiveness of Folic Acid Recommendations

MMWR Survey of FA Knowledge:

	Heard Of FA	FA Prevents BDs	FA Before Preg?	Take FA Daily
1995	52%	5%	2%	28%
1998	68%	13%	7%	32%

Effectiveness of FA Recommendations

FDA, March 1996:

 Issued regs requiring fortification of grain starting January 1998;
 0.1 mg /day

March of Dimes

• Now investing \$10 million for 3 year national FA campaign

Mechanisms of Folic Acid Effects

Methyl Donor:

- Hcys + Methyl = Methionine;
- Methionine adenosylmethionine
- S-adenosylmethionine is major intracellular methyl donor

Mechanisms of Folic Acid Effects

DNA & RNA Replication:

- Methyl groups required for meiosis / mitosis
- Hypomethylation chromosome rearrangements, aneuploidy

Mechanisms of Folic Acid Effects

James et al, 1999:

- 50 DS mothers vs 50 age-matched controls
- Homozygosity for MTHFR 677 T = 2.8X risk DS

Mechanisms of Folic Acid Effects

Gene Regulation

- CpG dinucleotides located in gene regulatory regions:
- Methylation of the cytosine prevents transcription, turning gene "off"

Folic Acid and Malignancy

Folate and S-AM deficiency leads to:

- methylation inappropriate activation of proto oncogenes
- DNA synthesis and repair Chromosome breakage

Duthie, Br Med Bulletin, 1999

Mechanisms of Folic Acid Effects

Global hypomethylation found in human neoplasms:

- Cervical Carcinoma
- Colorectal Cancers
- Hematologic Malignancies

Folic Acid and Malignancy

Netherlands Cohort Study on Diet and Cancer (n = 58, 279):

• Folate levels are inversely related to incidence of small cell, squamous cell, and adenocarcinomas of the lung.

Voorrips et al, Cancer Epid 2000

Folic Acid and Malignancy

Kato et al, 1999

- Case-control study.
- 105 cases colorectal cancer and 523 controls.
- The highest folate levels were associated with lowest cancer risk (OR = 0.52).

Br J Cancer, 1999

Folic Acid and Malignancy

Zhang et al, 1999:

- Prospective cohort study of 88,818 women, including 3,483 cases of breast cancer.
- In alcohol users, folic acid level associated with breast cancer risk.

JAMA, 1999

Folic Acid and Malignancy

In Breast cancer patients who used 15 g alcohol/day:

- Cancer risk highest if low folate:
- If FA intake < 300 μ g/d, RR = 1.32
- If MV + FA, RR = 0.74

Zhang et al, JAMA, 1999

Folic Acid and Malignancy

Colorectal cancer is associated with alcohol and folate:

- Microbes turn alcohol to acetaldehyde
- Acetaldehyde breaks down folate
- Low folate is carcinogenic

Homann et al, Int J of Cancer,1999

Mechanisms of Folic Acid Effects

Transmethylation Reactions

- Methyl groups required for synthesis of AA, proteins, lipids (myelin), etc.
- Methyl group availability slowed tissue growth

Folic Acid and Other Defects

Shaw et al, 1995; Botto et al:

- Population-based case-control studies of pre-pregnancy diet
- FA risk of oro-facial clefts by 25-50%

Lancet 1995

Folic Acid and Other Defects

Czeizel et al, 1993:

- Reanalyzed original FA trial data
- FA associated with: urinary tract defects heart defects

Br Med J, 1993

Folic Acid and Other Defects

Wenstrom et al, 2001:

- Tested AF from 26 cardiac defect fetuses and 116 controls
- 58% of cardiac cases had MTHFR 677 C T ± homocysteine

AJOG, 2001

AF Homocysteine and MTHFR Analysis

	<u>Cases</u> (n = 26)	<u>Controls</u> (n = 116)	<u>P</u>	<u>OR</u>
Either mut	50%	20%	0.003	4.0
or Hcys > 90%	(13/26)	(23/116)		(1.6 - 9.9)
Both mut	12%	0	0.006	34.7
<u>and</u> Hcys > 90%	(3/23)	(0/116)		(1.7 - 694.3)

Folic Acid and Other Defects

Mechanism?

- Most if not all defects associated with MTHFR 677 C T arise by:
 - Slowed growth, leading to
 - Abnormal timing of events

Cardiac Defects Associated with MTHFR 677 C T and/or High AF Homocysteine

- Hypoplastic Left Ventricle
- Coarctation of the Aorta
- Pulmonary Stenosis
- Pulmonary Atresia
- Atrial Septal Defect
- Truncus Arteriosis
- Complete AV Canal

% Methylated Nuclei and % Moderate-Strong in HLH				
	Controls (n = 28)	Cases (n = 34)		
% methylated	97%	74%*		
% mod-strong	84%	47%*		
* P < .0001				

Discussion

- Migrating neural crest cells form aortico-pulmonary septum, aortic and pulmonary valves
- Are these cells particularly sensitive to methyl groups?

Folic Acid Deficiency

Jacob et al, 1998:

- 8 healthy elderly women placed on FA-deficient diet
- Genome-wide DNA hypomethylation in lymphocytes after 5 weeks

Journal of Nutrition, 1998

Folic Acid and Heart Disease

Boushy et al, 1995:

 Meta analysis of 27 publications homocysteine is independent risk factor for arteriosclerotic heart disease

JAMA, 1995

Folic Acid and Heart Disease

Risk of CAD by 60% in men and 80% in women for every 5 μ mol in homocysteine.

Boushy et al, JAMA, 1995

Folic Acid and Heart Disease

Kang et al, 1988; 1993:

 Individuals with CAD have 3X incidence of MTHFR 677 C Т

> Metabolism, 1988 Circulation, 1993

Folic Acid and Heart Disease

Kluijtmans et al, 1996:

- 60 Dutch men with premature vascular dz vs healthy controls.
- 15% homozygous for MTHFR C T vs 5% of controls.

Am J Hum Gen, 1996

Folic Acid and Heart Disease

Kang et al, 1988; 1993: Kluijtmans et al,1996: MTHFR 677 C T significantly more common in individuals with:

- Coronary Artery Disease Severe Coronary Artery Stenosis
- Myocardial Infarction
- **Cerebrovascular Disease**
- **Peripheral Vascular Disease**

Metabolism, 1988; Circulation, 1993; Am J Hum Gen, 1996

Folic Acid and Heart Disease

Rozen et al, 1995:

• MTHFR 677 C T associated with heart disease only if folic acid level < 50% of normal

Am J Hum Genet, 1995

Folic Acid and Psychiatric Disease

Folate deficiency is associated with:

- Schizophrenia
- Obsessive-Compulsive Disease
- Major Depression

Heran et al, 1999

Folic Acid and Psychiatric Disease

Folate deficiency lowers levels of:

- S-adenosylmethionine
- 5-hydroxytryptamine

Both antidepressants

Folic Acid and Malignancy

Godfrey et al, 1990:

- Double blind, placebo control trial
- 40 patients with acute schizophrenia or major depression and folate deficiency took:
 - -- psychotropics alone, or

-- psychotropics plus folic acid

Lancet 1990

Folic Acid and Psychiatric Disease

Outcome Scores Showed:

• Folate significantly improved clinical and social recovery.

Godfrey et al, Lancet 1990

Mental Effects of Folate Deficiency

Copen et al, 1986:

- 83 patients with affective disorder (53 unipolar, 23 bipolar, 7 schizoaffective)
- Double-blind comparison of: Lithium plus Folate vs Lithium plus Placebo

Br J Psychiat, 1982; 141:87-9

Mental Effects of Folate Deficiency

Copen et al, 1986:

 Patients with highest plasma folate had significant reduction in affective morbidity.

Br J Psychiat, 1982; 141:87-9

Mental Effects of Folate Deficiency

Experimentally-Induced Folate Deficiency:

- Sleeplessness
- Forgetfulness
- Irritability
- Organic Brain Syndrome
- Affective Disorders

Herbert et al, Trans Assoc Amer Phys, 1962

Mental Effects of Folate Deficiency

Anticonvulsant-Associated Folate Deficiency:

- Depression
- Behavioral disturbances
- Psychosis

Young & Ghadjrian Prog Neuro Psycho-Pharm & Biol Psych, 1989

Folic Acid and Aging

Senescence caused in part by:

- Defective somatic cell methylation
- Accumulated genetic instability
- Oxidative damage to DNA
- All related to folate availability

Mental Effects of Folate Deficiency

Clark et al, 1986: Case-control study of Alzheimer's Disease (AD)

164 patients with AD (88 clinical dx plus 76 hist dx) 108 normal controls

All age 55

Arch Neurol 1998

Mental Effects of Folate							
Deficiency							
Udds Ratio of Confirmed AD							
Analyte Levels							
	Top <u>Third</u>	Middle <u>Third</u>	Lowest <u>Third</u>				
Hcys	4.5	1.0	1.0				
	(2.2-9.2)	(0.4-2.3)	(0.4-2.7)				
Folate	1.0	0.4	3.3				
	(0.3-3.1)	(0.1-1.5)	(1.8-6.3)				
Clarke et al, Arch Neurol 1998							

Folate Deficiency

- Deficient methylation of uracil to thiamine
- Incorporation of uracil into DNA
- Repair of uracil in DNA requires transient single-strand breaks
- risk of double-strand breaks
- risk of micronucleus formation

Folic Acid and Aging

Fenech et al, 1998:

- Cross-sectional study of: 49 males, 57 females
- DNA damage (micronucleated cells and DNA methylation) assessed before and after folate/B₁₂ therapy* vs placebo

•*3.5 x the recommended dietary intake

Carcinogenesis, 1998

Folic Acid and Aging

- 25% of MNC frequency explained by age
- Micronucleated cell frequency with homocysteine B₁₂
- Folate / B₁₂ decreased MNC by 25% in those with initially high values

Fenech et al, Carcinogenesis, 1998

The MTHFR 677C T Allele

Munoz-Moran et al, 1998:

- Tested 695 people < 40 years old in southern Spain
- TT genotype (homozygous 677C T) increased from 13% before 1982 to 26% after 1982
- 35% took FA in 1982, 55% in 1986

Lancet Vol. 352, October 1998

Summary

Folic Acid reduces risk of:

- First incidence birth defects
- Recurrent birth defects
- Coronary artery disease
- Vascular disease
- Certain psychiatric disorders

Summary

Folic Acid Influences:

- Certain cancers
- Alzheimer's Disease
- Aging